Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet-Fed Rats

Sunhye Lee, Katherine I Keirsey, Rebecca Kirkland, Zachary I Grunewald, Joan G Fischer, Claire B de La Serre
J Nutr . 2018 Feb 1;148(2):209-219.
Funded by: Publication was not directly funded, but USHBC freeze-dried blueberry powder was provided at no cost.

Background: Gut microbiota dysbiosis has been linked to obesity-associated chronic inflammation. Microbiota manipulation may therefore affect obesity-related comorbidities. Blueberries are rich in anthocyanins, which have anti-inflammatory properties and may alter the gut microbiota.

Objective: We hypothesized that blueberry supplementation would alter the gut microbiota, reduce systemic inflammation, and improve insulin resistance in high-fat (HF)-diet-fed rats.

Methods: Twenty-four male Wistar rats (260-270 g; n = 8/group) were fed low-fat (LF; 10% fat), HF (45% fat), or HF with 10% by weight blueberry powder (HF_BB) diets for 8 wk. LF rats were fed ad libitum, whereas HF and HF_BB rats were pair-fed with diets matched for fiber and sugar contents. Glucose tolerance, microbiota composition (16S ribosomal RNA sequencing), intestinal integrity [villus height, gene expression of mucin 2 (Muc2) and β-defensin 2 (Defb2)], and inflammation (gene expression of proinflammatory cytokines) were assessed.

Results: Blueberry altered microbiota composition with an increase in Gammaproteobacteria abundance (P < 0.001) compared with LF and HF rats. HF feeding led to an ∼15% decrease in ileal villus height compared with LF rats (P < 0.05), which was restored by blueberry supplementation. Ileal gene expression of Muc2 was ∼150% higher in HF_BB rats compared with HF rats (P < 0.05), with expression in the LF group not being different from that in either the HF or HF_BB groups. Tumor necrosis factor α (Tnfa) and interleukin 1β (Il1b) gene expression in visceral fat was increased by HF feeding when compared with the LF group (by 300% and 500%, respectively; P < 0.05) and normalized by blueberry supplementation. Finally, blueberry improved markers of insulin sensitivity. Hepatic insulin receptor substrate 1 (IRS1) phosphorylation at serine 307:IRS1 ratio was ∼35% higher in HF rats compared with LF rats (P < 0.05) and HF_BB rats.

Conclusion: In HF-diet-fed male rats, blueberry supplementation led to compositional changes in the gut microbiota associated with improvements in systemic inflammation and insulin signaling.

Latest Gut Health


Blueberries Improve Abdominal Symptoms, Well-Being and Functioning in Patients with Functional Gastrointestinal Disorders

Wilder-Smith CH, Materna A, Olesen SS
Nutrients. 2023 May 20;15(10):2396. doi: 10.3390/nu15102396.
Read More

Whole Blueberry and Isolated Polyphenol-Rich Fractions Modulate Specific Gut Microbes in an In Vitro Colon Model and in a Pilot Study in Human Consumers

Alexandra Ntemiri, Tarini S Ghosh, Molly E Gheller, Tam T T Tran, Jamie E Blum, Paola Pellanda, Klara Vlckova, Marta C Neto, Amy Howell, Anna Thalacker-Mercer, Paul W O'Toole
Nutrients . 2020 Sep 12;12(9):2800.
Read More

Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice

Arianne Morissette, Camille Kropp, Jean-Philippe Songpadith, Rafael Junges Moreira, Janice Costa, Roger Mariné-Casadó, Geneviève Pilon, Thibault V Varin, Stéphanie Dudonné, Lemia Boutekrabt, Philippe St-Pierre, Emile Levy, Denis Roy, Yves Desjardins, Frédéric Raymond, Vanessa P Houde, André Marette
Am J Physiol Endocrinol Metab . 2020 Jun 1;318(6):E965-E980.
Read More