Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage

Yun Wang, Chen-Fu Chang, Jenny Chou, Hui-Ling Chen, Xiaolin Deng, Brandon K Harvey, Jean Lud Cadet, Paula C Bickford
Exp Neurol . 2005 May;193(1):75-84.

Free radicals are involved in neurodegenerative disorders, such as ischemia and aging. We have previously demonstrated that treatment with diets enriched with blueberry, spinach, or spirulina have been shown to reduce neurodegenerative changes in aged animals. The purpose of this study was to determine if these diets have neuroprotective effects in focal ischemic brain. Adult male Sprague-Dawley rats were fed with equal amounts of diets (blueberry, spinach, and spirulina) or with control diet. After 4 weeks of feeding, all animals were anesthetized with chloral hydrate. The right middle cerebral artery was ligated with a 10-O suture for 60 min. The ligature was later removed to allow reperfusional injury. Animals were sacrificed and brains were removed for caspase-3 enzymatic assays and triphenyltetrazolium chloride staining at 8 and 48 h after the onset of reperfusion. A subgroup of animals was used for locomotor behavior and biochemical assays. We found that animals which received blueberry, spinach, or spirulina enriched diets had a significant reduction in the volume of infarction in the cerebral cortex and an increase in post-stroke locomotor activity. There was no difference in blood biochemistry, blood CO2, and electrolyte levels among all groups, suggesting that the protection was not indirectly mediated through the changes in physiological functions. Animals treated with blueberry, spinach, or spirulina had significantly lower caspase-3 activity in the ischemic hemisphere. In conclusion, our data suggest that chronic treatment with blueberry, spinach, or spirulina reduces ischemia/reperfusion-induced apoptosis and cerebral infarction.

Latest Brain Function


Chronic and postprandial effect of blueberries on cognitive function, alertness, and mood in participants with metabolic syndrome – results from a six-month, double-blind, randomized controlled trial

Peter J Curtis, Vera van der Velpen, Lindsey Berends, Amy Jennings, Laura Haag, Anne-Marie Minihane, Preeti Chandra, Colin D Kay, Eric B Rimm, Aedín Cassidy
Read More

Blueberry juice augments exercise-induced neuroprotection in a Parkinson’s disease model through modulation of GDNF levels

Castro SL, Tapias V, Gathagan R, Emes A, Brandon TE, Smith AD
Read More

Protective Effects of a Polyphenol-Rich Blueberry Extract on Adult Human Neural Progenitor Cells

Zheng T, Bielinski DF, Fisher DR, Zhang J, Shukitt-Hale B.
Read More